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I . Introduction

Mortality rates due to coronary heart disease have declined sharply in some industrialized
countries during the last fifteen years. However it is still not possible to determine the complete
cause of the past decline in any one country, which could result from many factors working
individually or in a multivariate fashion. This decline could be due to disease coding changes,
public health programs, life style changes or improvements in medical and surgical care. Therefore,
the main objective of this study is to develop a modelling strategy useful to examine and predict
major trends in coronary heart disease. Once we develop a model which can mimic population
changes over time, then the models can be extended to provide information on intervention

effects by changing the risk factors.

I. Model and Method

A reduced model of coronary heart disease is shown in Figure 1.

At the beginning of the kth year, each subject in a cohort will have had either a previous myocardial
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Figure 1. Reduced Model for Coronary Heart Disease
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infarction (MI) or no previous MI. At the end of the kth year, the outcomes for those subjects
without a previous MI may be death from other causes with the probability pl, death from
Coronary Heart Disease (CHD) with the probability p2, a first non-fatal MI with the probability
p3 or no change with the probability 1 —(pl + p2 + p3).Outcomes for those who have had a

previous MI are similar except that there will be a recurrent non-fatal Ml instead of a first non-
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fatal ML For those subjects with a previous MI, we assumed that their transition probabilities are
independent from the number of previous Mls. Thus, two distinct types of conditional probabilities
are required in the analyses depending on the previous history of ML If the individual with no
previous MI has no change then the individual will stay in the “No Previous MI” pool at the
beginning of the next time interval. If the individual with no previous MI has a first non-fatal
M], then the individual will go to the “Previous MI” pool at the beginning of the next time interval.
If the individual with a previous MI has nochange or a recurrent non-fatal MI, then the individual
will stay in the “Previous MI” pool at the beginning of the next time interval. We used a year
as the unit time interval.

Traditionally it is considered that age, gender, serum cholesterol level, diastolic blood pressure
and cigarette smoking are the major risk factors in populations which are associated with the
morbidity and the mortality from coronary heart disease.

A data set from the North Karelia, Finland was available for this study. A cohort of eastern
Finnish men aged 25-59 years in 1972 was identified and examined as part of the North Karelia
project. During the examination, blood pressure, serum cholesterol level, and number of cigarettes
smoked per day were recorded. Participants’ names were linked to the Finnish death certificate
register and the hospital admission records for each year from 1972 through 1978. Figure 2
provides a summary of descriptive statistics of the risk factors measured at 1972 and the number
of deaths over 8 years from 1972 through 1978. In general this population had higher cholesterol
levels and diastolic blood pressures than the U.S. Framingham population at that time. The Finnish
population is very famous for high incidence of and mortality from heart disease. This is the
population used for the simulation.

In order to incorporate the information about the risk factors of each individual and more
than two endpoints in the model, a polychotomous logistic function was utilized to determine
the risk of having an event for an individual i in a population. Risk of the dth endpoint for an

individual i at the kth time interval can be written as the following. -

1 .
1+ exp(1—f(x, Bd(k)))

where f(.:c!;, Bd(k)) -
=BdO(k) + Bdl(R) X+ .., + Bddk)xi4
(d=1,2,3) (i=1,..n)

Pd(k) =
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Figure 2. Descriptive Statistics of Male Population of North Karelia, Finland, 1972-1978.

Death Death .
from CHD from OC Alive Total
Chol. at 1972
300.5+59.1 273.5+48.5 261.94+50.3 263.24+50.7
(Mean4SD)
DBP at 1972
98.6+14.6 94.8+14.1 91.24+11.9 91.5+12.1
(Mean4SD)
% of Smokers
67.6 65.1 49.7 50.6
at 1972
N = 102 218 5101 5421
where xil = serum cholesterol level (mg/dl)

xi2 = diastolic blood pressure (mmHg)

xi3 = 1 for 1 to 15 cigarettes per day
O for otherwise

xi4 = 1 for more than 15 cigarettes per day
O for otherwise.

Note that we categorized the smoking into three groups ; non-smokers, below the Finnish
average, andvaboize the Finnish average.

There are some practical difficulties in estimating polychotomous logistic regression coefficients.
The first is computer storage as a result of the potentially large number of parameters. In our
case the number of parameters to be estimated woull:l be a 3*5 matrix for each time interval.
Secondly, only one of the major computer packages, SAS, has the polychotomous logistic reg-
ression available, the others being restricted to at most simple dichotomous logistic regression.
Thirdly, the SAS package does not accomodate sparse data. Figure 3 shows the actual number
of events in 1975 in the Finnish population. As you can see, the events are very few. For example,
10 deaths from CHD occured with a denominator of over 5000, and one non-fatal Ml has a
demominator of 75.

For these reasons, as well as for general analytic simplicity and flexibility, we utilized a series
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Figure 3. Actual Transition in North Karelia, Male Population during Year 1975.
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of individualized logistic regression as a replacement for the polychotomous regression model.
This method of replacement was studied by Begg and Gray (Biometrika, 1984). With this sim-
plified method, each category is individually compared with a baseline category using a dichoto-
mous logistic models. Begg and Gray suggested guidelines for selecting the baseline category.
If there is a normal category, it will be appropriate to use it as a baseline. If there is no category
that is especially suited to be the baseline, then it is desirable to choose the one with the highest
prevalence. In our study no change from previous state was treated as the baseline category.
The reduced model shown in Figure 1 was used to define the transition states. Thus, for those
subjects with no previous MI we compared death from OC with no change, death from CHD
with no change, and first non-fatal MI with no change. For those subjects with the previous MI
we compared death from OC with no change, death from CHD with no change, and recurrent
non-fatal MI with no change.

In this simplified method, we wish to discriminate among 3 categories and the baseline category,

denoted as category 0, on the basis of p covariates. Let’s define the xi vector to be a set of
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covariates for the ith person, xi =(xia, .., xip), where xio is an indicator for the constant term
for n cases. Let Zdi be an indicator variable which takes the value 1 if the ith case belongs to
the dth category and O otherwise. If we were to perform an individual logistic regression comparing
category d with 0, we would employ a model of the form

log(gdi/g0i) = xi X Bd (d=1,2,3)
where gdi = p(Zdi=1/g\cj, Zoi + Zdi = 1)

goi = p(Zdi=O/gg’, Zoi+Zdi = 1)
and where 3d is a p+1 vector of unknown parameters.

Therefore, a series of 3 conditional likelihoods are separately maximized. Since maximum

likelihood estimation is employed, the estimates of 4d will be asymtotically unbiased.

II. Results

An event modelling program was developed using the University of Minnesota’s Micropopula-

tion Simulation Facility. At the start of each simulated time interval, the individual’s characteristics

Figure 4. Transition Probabilities at 1973 for an Individual with no Previous MI, Chol-290, DBP-100

and Cig-20.
Xxi = (290, 100, 0, 1)
B, = (—5.544, 0021, .0029, .0330, .041)

B, = (—14.609, .0078, .0621, 1.1377, .8805)

5; = (5163, .0075, .0029, .3640, .1286)

P, = 1 = .0099
1 +¢5.544 — .0021*% 290 — .0029*100—.033*%0—.041* 1

P, = 005

P, = 071

No previous MI 09141 no change

0.0099 death from OC
0.005 death from CHD
0.071 first non-fatal MI
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and the logistics regression coefficients are read from a disc file into the computer memory. A

subroutine in the program uses this information to compute the risk of having an event during

the simulated interval of one year.

Let us assume that we have an individual with no previous MI, cholesterol level 290, diastolic

blood pressure 100 and 20 cigarettes smoked per day. Then the x vector will have a set of numbers

(290,100,0,1) with these values and the two dummy variables for smoking. Figure 4 illustrates

three sets of logistic regression coefficients for year 1973. Then pl, p2 and p3 for this year can

be computed as shown. Here pl means the probability of dying of other causes, p2 the probability

Figure 5. Event Decision Scale

0.0 0.1 0.2 0.3 04 Q5 0.6 0.7 0.8 0.9 1.0
1 ] | 1 1 =i 1 1 1
T T T T 1 I T T T
Event No Change
pl p2 p3
S
pl =.0099

—
pl +p2 = 0149

—_—

i

pl +p2 +p3=.086

if 0<r=pl, then death from OC
if p1<r =pl, then death from CHD

if pl +p2<r=pl+p2+p3, then first non-fatal Ml

if p1 +p2+ p3<r=1, then no change
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of dying of CHD, and p3 the probability of ‘having of first non-fatal MI.

Now the cumulative probabilities of pl, p2, and p3 are arranged on a 0 to 1 scale as shown
in Figure 5. The event part is expanded below. In order to determine which of the mutually
exclusive outcomes occur, a pseudo-random number from a uniform distribution over 0 to 1.
0 is obtained. If the random number falls between 0 and pl, then the individual will die from
other causes ; if the random number falls between pl and the sum of pl and p2, then the in-
dividual will die from CHD ; if the random number falls between the sum of pl and p2 and the
sum of pl, p2, and p3, then the individual will have a first non-fatal Ml ; if the random number
is greater than this cumulative sum, there will be no change in status of the individual.

Results from a seven-year simulation with 100 replications using estimates of regression coef-
ficients and population member specification from the Finnish data set are shown in Table 1.
This table compares two types of CHD outcomes from the simulation and the actual number
of CHD events in the North Karelia male population. There are no statistically significant diffe-
rences seen between the expected results from the model and the actual observations for either

CHD mortality or morbidity. Another way of representing these same results is shown in Figures

Table 1-a. Comparison of Number of CHD Deaths from a Simulation with 100 Replications with Actual

Observation

1972 1973 1974 1975 1976 1977 1978
EXP 8 20 22 17 18 12 16
OBS 8 18 17 14 18 12 15

x2—=1.92 df=6 p>0.05

Table 1-b. Comparison of Number of First Non-fatal MI from a Simulation with 100 Replications with

Actual Observation

1972 1973 1974 1975 1976 1977 1978
EXP 21 27 24 29 28 39 34
OBS 21 27 32 28 28 37 34

x?=280  df=6 p>0.05
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Figure 6. Distribution of Death from CHD Given No MI over 100 Epochs

Observed Number of CHD/No Ml = 90
Mean = 90.2 SD. = 98
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6 and 7. These figures show the distributions of the number of CHD outcomes from a seven
year simulation over 100 replications. The asterisks represent the actual number of CHD outcomes;
the actual number of both types of CHD events are very close to the mean and median of
the number simulated events.

Since the model can mimic the Finnish population results, a next step for us to look at would
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Figure 7. Distribution of New MI Given No MI over 100 Epochs

Observed Number of MI/No Ml = 172

Mean = 176.2 SD.= 140
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be how mortality and morbidit rates vary if we change some of the risk factors. Also more features

could be put in the model such as a genetic effect, hospitalization, and other health services.
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IV. Conclusion

A Monte Carlo simulation program uses risk and demographic characteristics of the North
Karelia registry to describe the morbidity of myocardial infarction (MI) and the mortality pattern
of coronary heart disease and other causes. A stochastic compartmental model has been con-
structed to describe the temporal dimension of event development. To incorporate the risk factor
information and more than two possible end-points, a series of separate simple logistic regressions
(Begg and Gray, Biometrika, 1984) were performed. The predicted estimates reveal a large effect
of cholesterol, and possible risk parameter interaction in females. It is necessary to separate the
risk for primary and recurrent MI's in order to match the observed mortality data. Since the model
incorporates known distributions of risk factors and individual population characteristics, it will
be used to examine the effect of high risk-factor-based and population-based risk factor modi-

fication in a community.
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