An Additive Risk Model for Multi-type

Recurrent Event Data
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In this study, we consider the statistical modeling and
analysis of the replicated multi-type point process data with
covariates. Such data arises when heterogeneous subjects
experience repeated events or failures which may be of several
distinct types.

We propose a nonhomogeneous mixed Poisson process with
random (subject) and fixed (covariate) effects with an additive
intensity model. This method is applied to two examples, the
first example involves 334 children who had at least three
episodes of acute otitis media. The second example is a dataset
of 661 homosexual men who had at least one episode of syphilis
or gonorrhea.

This model is very useful for highlighting potential predictors
of recurrent events. The model proposed in this paper allows
one to examine a data set where related recurrent events are
better analyzed as a single outcome, rather than individually. This
model can provide useful information about potential predictors;
however, it can be difficult to fit it into individual data sets.
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I. Introduction

A variety of models are available for the analysis of time to
event data where only a single outcome is of interest. These include
the proportional hazards model(Cox, 1972), the additive risk model
(Aalen, 1980), parametric models and extensions of these models. For
this - type of data, Cox’s proportional hazards model has seen the
widest use. This is due to the ease of interpretation of the covariate
effects and the availability of software.  While the proportional
hazards model is useful in many settings, the additive risk model can
be a useful alternative for when the data does not satisfy the
proportionality assumption.

Another common type of data collection involves the recording of
recurrent episodes, which may be of one or several types. Examples
of this type of data include the occurrence of epileptic seizures
(Albert, 1991), infection episodes, tumor recurrences (Gail et al., 1980,
Freedman et al, 1989), sexually transmitted diseases, and bleeding
incidents in medical studies. In engineering, the multivariate failure
times may be the times to breakdown of a certain type of machinery,
such as an electric computer or an automobile. Examples in sociology
include studies of mobility, unemployment, fertility (Allison, 1984) and
the experiences of different life events by each person. Examples in
marketing research include the purchases of various products by each
consurner.

Several methods have been proposed in the literature to deal with
situations in which individuals experience repeated single type events.

These methods impose specific structures of dependence among the
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recurrences on each subject. Gail, Santner and Brown(1980) and
Prentice, Williams and Peterson(1981) emphasize the interevent times
and adopt the stratified proportional hazards model for use in this
setting. Cox(1973) proposed the use of a modulated renewal process.
Aalen and Husebye(1991) and Aalen, Bjertness and Sonju(1995) focus
on renewal processes and consider the variation of interevent times
within and between individuals.

Models based on modulated Poisson processes with group or
subject random effects have also been developed (Lawless, 1987,
Thall et al, 1988). Lawless and Neadeau(1995) developed a robust
semiparametric generalization of these methods that remains valid
without the assumption of an underlying Poisson or mixed Poisson
process. These methods are based on the proportional intensity model.

A more complex problem is that of modeling repeated multitype
events. Abu-Libdeh, Tumnbull and Clark(1990) presented a
non-homogeneous mixed Poisson process with a random (subject)
and a fixed covariate effect and a proportional intensity for this type
of data. Method has also been proposed to handle recurring and
terminating events(Cook et al., 1997, Li et al., 1997).

We consider the statistical modeling and analysis of replicated
multi-type point process data with covariates. = We propose an
extension of Abu-Libdeh, Tumbull and Clark’s(1990) model
incorporating an additive intensity. This model is developed in
Section 2 and the application of this model to two examples is

considered in Section 3. Final remarks are given in section 4.
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II. Statistical method for recurrent events

Suppose that there are n subjects, each with an associated vector
Zi (1<i<#n) of baseline covariate values. Subject i is observed
over time period [0, 7], where time is measured from a defined

starting point for that subject. Individuals experience repeated events
or failures, each of which can be any of J different types. Suppose

that K ;=0 events of type j (1<;j<J) are observed to occur on
individual I, 1<i<#, at times 0=¢;<¢;<...<{¢;x,. We suppose
that there are no ties among events of the same type in the same
individual. Also, the gap times {g, 1<i<n,1<;<J,1<k<K ;}
are defined by g =1¢;%—t ;- for 1<k<K ,. The final gap time
&ixy+1= Ti—tx,20 is considered censored and used as such in

the analysis.

The Poisson process assumption implies that the intensity, as a
function of time since the previous event, is the same for each period
and that the periods are independent. Thus, the intensity for the
occurence of the next event for type j in individual i is given by

0.£:h LB, T3 N < TS (1)

where h,(t,B) is a fixed function which depends on the covariate
vector, and the proportionality factors, #, and &, are random

variables. Abu-Libdeh et al.(1990) assumed that %,(¢, 8) follows the
proportional intensity. We now consider estimation and inference for

this model when %,(¢, B) follows the additive intensity.
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Let the event processes of type j in individual i be independent
nonhomogeneous mixed Poisson processes with respective intensity

functions

Ai=0:E A0 FZiB) oo, 2)

where A¢(#)>0 is a baseline intensity function, 4 is a column

p-vector of regression coefficients, time ¢ is measured from the ith
subject’s starting point, i‘\é‘ =1 for all i and 4, and & are
=

non negative parameters. The parameters (6;,&1,%2,...,&5)
corresponding to individual [ are considered as random effects. The
values 6,,605,...,0, are considered to be an independent
identically distributed sample from the gamma distribution with scale
parameter 7 and shape parameter v. The vectors (&;:1<:<#) are
assumed to be an independent identically distributed sample from a
Dirichlet distribution with parameter e@=(ay,...,a;), which is
independent of the {6}

Define the baseline cumulative intensity function by
t
Ao(t)=f0/10( u)du. Then, given 0, and &, the contribution of

the ith subject to the conditional likelihood is
K..
T ( [1,6.8 140 (£ + Z@))e 6 aoCTe 24
K..
={ Ij Eﬁf”}af"e — 8y (T)+ZBT) Ij H(Ao(tijk)+ZiB)9
1=1 =1 k=1

where K; = :K i
=
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Our estimation process consists of two steps. First, we estimate the
unknown parameters a, v, 7, 0 and A. Using these parameter
estimates, we can then estimate the random subject effects, €, and
£, Let Ag()=68t°"", then the contribution of the ith subject to
the marginal likelithood function is

[ [ e T ae

K +v—1 — 0T+ ZBTi+1/7)

[T o0+ 21— o,

X ﬁxa’ K ;+ea) ]
I(K + ‘Z y o e

MK, +v) 7 i'llllﬂ(afuk +Z:8)
“I™) [y TS+ yZBT;+11 5

=L1i(d)L2,'(U, 7, 6, .8).

The total log likelihood is then given by
(e, v,7,6,8 = 33 {log(L 1{@)+ log(L1(v, 7,8, /).

For inference on @, expressions for the score vector, {Xa), and for
the sample information matrix, I a), are given in the Appendix. For
inference on v, 7 & and §, the score vector and information
matrix are also given in the Appendix. Maximum likelihood estimates
(mle) of the parameters of interest, @, v, 7, ¢ and pf, are obtained

hy setting the components of the score vector equal to zero and
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solving for the unknown values. This is done using a numerical
iterative technique such as the Newton-Raphson method.

The mles of @, 5, v, 6 and 7 are now used to compute the
empirical Bayes estimates of the random variables &, and & for
each individual. These estimates are the conditional means given the
information on each individual and represent estimates of the relative
risk level for each individual when compared with the average. The
posterior distribution of 8, has a gamma distribution with shape

(Ki. + U)
CTP+ZBTi+7r ™)

parameter K ; + 1 and mean , the posterior

distribution of &, has a Dirichlet distribution with parameters

(a@+ K;). Therefore, we estimate 6, and Ei,‘ by

0i=—5 = . =1 ad Ey=—Ttp i,
T°+Z BT+ 7 K, + i: 2.
) s=1
respectively.
M. Examples

We now consider an example of multitype recurrent events in an
otitis media study. The purpose of the study is to evaluate the
possible long termn effects of early-life otitis media on speech,
language, cognitive, and psychosocial development. Over time, more
than 5000 children with sufficient ear diseases have been enrolled in
the study and randomized to one of two groups. In one arm of the

study the children receive ear tubes while the second arm delays the



An additive risk model for multi~type recurrent event data 191

insertion of the ear tubes. The expectation is that the group receiving
tubes will have less ear disease on average, while the group not
receiving tubes is expected to have a substantial percentage of
children who do not have sufficient additional episodes of ear disease
to justify tubes. To determine if a participant is eligible for
randomization into the study, monthly assessments of ear diseases
are conducted, so that the study also provides information on the
natural history of ear disease.

The data set used for this example is a sample of 334 children
who were followed for 2 years and experienced 3 to 10 episodes of
Acute Otitis Media(AOM). The events of interest are the successive
incidence times of right or left ear AOM. We denote an infection in
the right ear as type I and an infection in the left ear as type IL
Table 1 summarizes the distribution of patients according to the
number of failures of each type. Analyses were restricted to the
first five events in each ear. The covariates used in this analysis
were SEX, an indicator which is 1 for females and RACE, an

indicator which is 1 for caucasian.

Table 1. Frequency distribution of the number of AOM episodes in each ear

Number of episodes Right ear Left ear
0 6 8
1 2 25
2 50 62
3 89 87
4 61 57
5 103 %
Total failures 1,151 1,113
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Table 2. Mixed Poisson Process model. Endpoint is time to AOM

Parameter Estimate S.E. p-value
al 22.74 244 <.001

a2 21.96 235 < .001
vl) 340 0.507 < .001

r1) 0.138 0.039 <.001
81 1.218 0.023 < .001
SEX -0.431 0.087 < .001
RACE -1.148 0.043 <.001

Note: 1) the null hypothesis is HO:v=1, HO : 7=1 and HO : 6 =1.

The results obtained from fitting the model in equation (2) to
this data are presented in table 2. Recall that the parameters v
and 7 are the shape and scale parameter, respectively, of the gamma

distribution representing the random effects. The parameter 6 is
associated with the baseline hazard function. Covariate effects are
interpreted in the standard fashion.

Table 2 contains the results of this analysis. The shape

parameter ¢ and the scale parameter 7 are statistically significant.
This implies that the gamma distribution representing the random
effect. The baseline hazard estimate, &, is highly significant.
Similarly, both of the covariates included in the model are also
significant. The two covariates, SEX and RACE, have negative
coefficients, indicating that females and caucasians tend to develop
less AOM.

The second example to be considered is based on data from the
Multicenter AIDS Cohort Study(MACS). This study is a major
ongoing prospective study of the natural history of HIV infection and

AIDS in U. S. homosexual and bisexual men. Information on
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sexually transmitted diseases is collected semi-annually in this group.
The data set used for this example is a sample of 661 homosexual
and bisexual men who had experienced at least one syphilis(type I)
episode or one gonorrhea(type II) episode. Table 3 summarizes the
distribution of patients according to the number of failures of each
type. The covariates considered for this analysis were AIDS, an
indicator variable which is 1 for subjects with AIDS, DRUG, an
indicator variable which is 1 for drug use and age at baseline. The
mixed Poisson process model given by equation (2) was fit to this
data.  The covariates AIDS, DRUG and age at baseline were

included in the intensity function.

Table 3. Frequency distribution of the number episodes of syphilis
and gonorrhea.

Number of episodes Syphilis » Gonorrhea

0 459 152
1 167 404
2 26 86
3 5 13
4 3 5
5 0 1
6 1

Total failures 252 640

Table 4 contains the results of this analysis. The shape
parameter v is not significant and the scale parameter 7 is
statistically significant. This implies that in the gamma distribution
representing the random effect. The baseline hazard estimate, &, is
highly significant. Similarly, all three of the covariates included in
the model are also significant. Both AIDS and DRUG have negative
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coefficients inidicating a protective effect for the development of
either gonorrhea or syphilis. The coefficient for AGE is positive and
statistically significant; however, the magnitude of this coefficient is
smaller than that of the coefficients for both AIDS and DRUG.

Table 4. Mixed Poisson Process model. MACS data set Endpoint is
time to gonorrhea and/or syphilis

Parameter Estimate S.E. p-value
al 0.826 0.307 < 0.001

a? 2.203 0.809 < 0.001
vl 0.771 0.144 0.112
rD 0553 0.0217 0.039
an 1.173 0.021 < 0.001
AIDS -1.580 0.0954 < 0.001
DRUG ~-0.310 0.039 < 0.001
AGE 0.001 0.0005 0.001

Note: 1) the null hypothesis is HO: v =1, HO: v =1 and HO:§ =1.

IV. Discussion

This model is very useful for highlighting potential predictors
of recurrent events. Many methods that are currently available for
this problem are based either on a conditional approach or a complex
model. The model proposed in this paper allows one to examine a
data set where related recurrent events are better analyzed as a
single outcome, rather than individually. This model can provide
useful information about potential predictors; however, they can be
difficult to fit into individual data sets.

The model proposed here is based on an intensity comprising
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linear hazards and random effects.  The interpretation of the
parameters obtained from these models is straightforward, since the
parameters can be partitioned into random effects, baseline hazard
and regression piece.  Thus, for the regression aspect of this
approach the interpretation is the same as that of any hazard

regression model.
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Appendix

Components of Score vector and Information Matrix for
Likelihood based on Random Effects Poisson process Model of
Section 2.

For inference on «, the score vector U( #), and for the sample

information matrix, I{ ), are given by
K K;
Unl@= B Zat k=D 7= S (R ahs—D .

Iam(a)= g{ Sl— Sula;+k—1) 24 SKZ‘( ga,-+s—l) _2}.

For inference on v, 7, & and B, the score vector and information

matrix are given by

K
Uiy, 7.8.8= 2 { Dv+s—1) 7'~ logll + T4+ yZAT ]},

_ (K (T +ZBT)
1+ T+ yZBT;

U rop=3 (K )

$ 51 L lost,)

U&(Vv y,6:8)= — { - e (5_—1 -
=1 3 1 8t,']k +Z,B

_ (K, + 97T log(T)
1+ 777+ yZBT;

K.
_ Zy _ (K, +9)7Za4T;
U,g,(V, 7,0,/ = Z‘{ 12[ gl atg_;1+zi/9 1+7Ti3+ 7Z.8T, 1,

IR

K;
Ly, 7.8,8= 2 B0+s—D ),
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B (TE+Z,8T)
1,(v,7.68= ,Z,{ 1+ yTP+ yZ,8T; g

yTElog(T)
1+ 7’T,'6+ yZAT;

_ ‘)’Z,‘,'Ti
Iyﬂ,-(vr 7, 8rB)_ ,g{ 1+7T‘6+ Q’Z,BT, },

Iy, 7,6,8= ,g{

%

_ K. (K;+WT/+Z8T)*
Linr.8.0= Z 1 A+ 777+ 7ZAT)
(K; +vT og(T) ),

(1+ 7T+ rZBT)*?

Is(v,7.6,0= 2\{

_ (K +V)Z;;T
Lo(n7.80= 3 (+ 717+ 1ZBT)

i (a 1) (a D
I&;(V 7, 8 B) ﬁ:‘ i‘\ z)k vk (lazg(f,fgﬂﬂ[)%+alog(tvk)])

(K, +WrTog (T + rZB8T)
(1+yT?+7ZBT)*

2701+ Slog (2 ;)2
ik ik i
Iy(v,7,0.8)= 2 ZL‘\;—L (81! +Z/9)1E

+

|

K+ AT M eg(THZ
(1 + yT?+ yZBT)?

Laov1.0.0= 55 2 Gt

= zIZIm(K +U)727‘2}
(+ yT? + 7Z8T)*

I3
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