한국보건사회연구원 전자도서관

로그인

한국보건사회연구원 전자도서관

자료검색

  1. 메인
  2. 자료검색
  3. 통합검색

통합검색

기사

위계적 질환군 위험조정모델 기반 의료비용 예측(Prediction of Health Care Cost Using the Hierarchical Condition Category Risk Adjustment Model)

개인저자
한기명
수록페이지
149-156 p.
발행일자
2017.06.24
출판사
한국보건행정학회
초록
Background: This study was conducted to evaluate the performance of the Hierarchical Condition Category (HCC) model, identify potentially high-cost patients, and examine the effects of adding prior utilization to the risk model using Korean claims data. Methods: We incorporated 2 years of data from the National Health Insurance Services-National Sample Cohort. Five risk models were used to predict health expenditures: model 1 (age/sex groups), model 2 (the Center for Medicare and Medicaid Services-HCC with age/sex groups), model 3 (selected 54 HCCs with age/sex groups), model 4 (bed-days of care plus model 3), and model 5 (medication-days plus model 3). We evaluated model performance using R2 at individual level, predictive positive value (PPV) of the top 5% of high-cost patients, and predictive ratio (PR) within subgroups. Results: The suitability of the model, including prior use, bed-days, and medication-days, was better than other models. R2 values were 8%, 39%, 37%, 43%, and 57% with model 1, 2, 3, 4, and 5, respectively. After being removed the extreme values, the corresponding R2 values were slightly improved in all models. PPVs were 16.4%, 25.2%, 25.1%, 33.8%, and 53.8%. Total expenditure was underpredicted for the highest expenditure group and overpredicted for the four other groups. PR had a tendency to decrease from younger group to older group in both female and male. Conclusion: The risk adjustment models are important in plan payment, reimbursement, profiling, and research. Combined prior use and diagnostic data are more powerful to predict health costs and to identify high-cost patients.